
 CGC International Journal of Contemporary Technology and Research

 ISSN: 2582-0486 (online) Vol.-3, Issue-2 DOI: 10.46860/cgcijctr.2021.06.31.205

CGCIJCTR 2021 www.cgcijctr.com

© All Rights Reserved to CGCIJCTR Page 205

Software Security: Role in SDLC
Shanky Goyal*, Navleen Kaur, SachinMajithia

Department of Information Technology,

Chandigarh Engineering College, Landran

Email Id: *shanky.it@cgc.edu.in

Abstract: This research emphasizes mainly on the need for software security. Softwares are developing at a faster pace so it is

required to impose security on them in order to secure them from cybercrimes. Softwares have been facing problems by the

attackers who are constantly kept on breaching the Data. Therefore this survey comprises the phases that are an integral part

of the SDLC from the security point of views such as Design and testing phase. Moreover, it quests upon the data related to

threats and attacks. Not only this, but it also involves the prerequisites that have to be determined before developing the

software like, what are the approaches that should be followed and what are the best suitable designs to secure the software?
.

Indexed Terms-Software, Security, threats. (Keywords)

I. INTRODUCTION

Instructions that advise the computer how to function.

Likewise, software is a bunch of data, instructions, or

programs used to make a computer work and execute

explicit tasks. Software security can represent the moment

of truth for the whole organizations nowadays. So how can

we better secure our system?

The answer to this inquiry is on higher priority than at

any other time. When an organization disregards security

issues[1], they expose themselves to risk. This problem

takes place because of the vulnerabilities that are present in

our software. However, these vulnerabilities are generated

during the development of software. An adversary exploits
these vulnerabilities through several attacks. This outcome

in the breaking of delicate information that is put away in

business software. These days, Governments are enacting

and authorizing data protection measures. For instance, the

European Union's GDPR expects organizations to

incorporate information security shields at the earliest

phases of development.

According to Statistics which reports on the number of

Data Breaches, approximately 3,809,448 records are stolen

from every day. On November 2, 1998, the Morris Worm

was presented as the first computer worm that circulates by

means of the internet, and was the first to acquire huge

media attention. It additionally brought about the main

lawful offense conviction in the US under the 1986

Computer Fraud.

Another worm named as Code Red was discovered on

the web on 15 July, 2001. The computers running
Microsoft’s IIS internet server were attacked. It absolutely

was the primary massive scale, mixed threat attack to target

enterprise networks successfully.

There are thousands and millions of softwares[2] that

are working on a daily basis for providing services to

customers. For example Medical Softwares that maintain

the “Electronic health records” of patients are so important

to be secured to prevent cybercriminals from stealing their

records. The data of these medical softwares are also

provided to the Insurance companies in order to facilitate

the patients financially. But the personal information of

patients is also in danger over this network as

cybercriminals can use this data for their monetary gain.

Because we know, online credentials are so valuable these

days.

You may think the preferred customer credits you have

acquired are not important to cybercriminals. Reconsider it

again. After around 10,000 American Airlines and United

accounts were hacked, cybercriminals booked free flights

and upgrades utilizing these taken credentials. Despite the

fact that the preferred customer credits were given back to

the clients by the airlines, this exhibits the worth of login

credentials.

Therefore, Building Secure Software’s [3] is as

paramount as writing efficient code along with quality

algorithms. For this to be done there is a satisfactory

solution that gives an organized way to deal with software

security-the secure development lifecycle (SDL).

We aimed (1) to analyse the security vulnerabilities; (2)

to survey the various attacks; (3) to assess how these factors

could be managed to protect the software.

II. DESIGN PHASE

There are various phases of SDLC –Requirement

gathering, Design, coding, testing and maintains as shown

in fig 1.

Fig 1: SDLC Life Cycle

The purpose of design stage is to design software that

meets the security prerequisites in order to prevent our

system from Forgery. Along with the requirements certain

types of vulnerabilities need to be kept in mind that arises

from coding problems.The coding problems featured in this

phase are: buffer overflow [4] (Stack and heap overflow)

and format String vulnerabilities. However, a secure design

also plays a vital role to control attributes such as

Confidentiality, Integrity, and availability. To accomplish

this task, later stage security engineering efforts are made
that introduce us with UML (Unified Modelling Language).

Requirement Gatehrinng

Software Design

Coding

Testing

Maintance

mailto:*shanky.it@cgc.edu.in

 CGC International Journal of Contemporary Technology and Research

 ISSN: 2582-0486 (online) Vol.-3, Issue-2 DOI: 10.46860/cgcijctr.2021.06.31.205

CGCIJCTR 2021 www.cgcijctr.com

© All Rights Reserved to CGCIJCTR Page 206

This stage design focuses mainly on the development of the

physical solution itself.

2.1 Security Prerequisites

To meet the objective of security, following are the security
preconditions that should be achieved:

2.1.1. Identification requirements:

Identification requirement is a security necessity that

indicates the extent to identify its externals before

interacting with them. These requirements includes

i. Who you say you are(name, user identifier)

ii. What you have(digital certificates, an employee

card, a hardware key)

2.1.2. Authentication requirements:

Authentication follows identification, if identity is

adequately significant to indicate, then so is authentication.

The typical objective of the authentication is to identify

who you are. The user has to enter his credentials like

username and password to allow the server to set up the
session to provide the information. After ensuring the

identity server authenticates the client for further process.

Due to the close connection betwixt identification and
authentication, they are once in a while grouped together in

security requirements.

2.1.3. Authorization requirements:
Authorization depends on both identification and

authentication. It is a process done by a server to determine

whether an authenticated user has a permission to elicit a

file or not, if not, the user will get a pop-up showing a

message “YOU ARE NOT AUTHORIZED TO ACCESS

THIS PAGE”.

Thereby prevents unauthorized users from obtaining

access to confidential data or call for the permission to

access restricted services.

These security specifications depend on distinguishing

an individual, confirming that the individual is who or what

it professes to be, and approving the access level and set of

activities related with the username and IP addresses.

Moreover, there are various security policies

implemented to preserve the CIA triads.One of the most

common security policies is IPSEC. IPSEC is a standard

set-up of conventions between two correspondence closes

across the IP network that gives information validation,

integrity and confidentiality.

Simultaneously, the IKE (Internet Key Exchange)

protocol is utilized to deal with the cryptographic keys

utilized by hosts for IPSEC. Hence, these are the essential

Security Specifications that needs to be taken care of before

designing any software.

2.2 Security Vulnerabilities

Therefore Security requirements depend not just on

correctness since implementation defects are likewise there

that produce security vulnerabilities [5].

These security vulnerabilities arise from not using the

type-safe languages. Hence it is required, not to utilize that

type-unsafe language, for example, C that outcomes in
boundary defects that can be exploited to run malicious

scripts. Following are the problems that are created due to

not using the secure coding standards:

2.2.1. Buffer overflow:

Buffer Overflow is a portmanteau of Buffer that is

continuous memory associated with a variable and field and

overflow is to put more into the buffer than it can hold. In

programming, Buffer overflow is actually an oddity in a

program where a program, while writing data into a buffer
overruns the buffer’s boundary and overwrites

neighbouring memory areas. Also buffer overflow occurs

when data written to a buffer [8] also corrupts data values in

memory addresses adjacent to the destination buffer due to

insufficient bounds checking. This can happen when

replicating data starting with one buffer then onto the next

without first watching that the data fits within the

destination buffer.

Buffer overflows are used to:

i. Overwrite local variables

ii. Crash the program

iii. Inject malicious code into program

For example: Char buffer can store only upto four

variables, but user has entered text containing 7 characters
including Null terminator. So in that case strcpy command

overwrites the frame pointer causing the segmentation fault.

Therefore generally in these cases it is recommended to

use security relevant features in the program such as

introduce another local variable to avoid the problem of

overwriting the frame pointer. However still the problem is

not solved because every time that local variable is going to

return out the address of Null Terminator.

To avert the buffer overflow from occuring, the call to

strcpy could be supplanted with strlcpy, which takes the

maximum capacity of A (including a null-termination

character) as an extra parameter. When accessible, the

strlcpy library function is preferred over strncpy which does

not null-terminate the destination buffer if the source

string's length is more noteworthy than or equivalent to the

size of the buffer (the third argument passed to the

function), now just look at the idea of how an attacker

injects his malicious code.

Following are the two steps:

1.Load malicious code into the program.

2.Somehow get %eip (Instruction pointer) to point to the

infected code.
The main goal of the adversary is to use a general-

purpose shell. It is a command line prompt that gives an

attacker general admittance to the system. Moreover, an

attacker takes advantage of the return address by simply

pushing the address of his own malicious code.

The most genuine approach to stay away from or

forestall buffer overflow is to utilize automatic protection at

the language level. However some techniques also exist for

C to avoid buffer overflow.

Below given are few points to solve this problem:

i. Use those languages that are specifically typed

and don't permit direct memory access, like

COBOL, Java, Python.

ii. Many programming languages other than C/C++

give runtime checking and at times even arrange

compile-time checking which may send an

admonition or raise an exemption when C or C++
would overwrite data.

Every interpreted language will protect against buffer

overflows, signalling a well-defined error condition. As a

result, Buffer overflows must thus be avoided by

maintaining a high degree of correctness in code which

performs buffer management.Just like buffer overflow,

another vulnerability “FORMAT STRING” has also been

found in the type-unsafe languages.

https://en.wikipedia.org/wiki/Data

 CGC International Journal of Contemporary Technology and Research

 ISSN: 2582-0486 (online) Vol.-3, Issue-2 DOI: 10.46860/cgcijctr.2021.06.31.205

CGCIJCTR 2021 www.cgcijctr.com

© All Rights Reserved to CGCIJCTR Page 207

2.2.2. FORMAT STRING VULNERABILITY:
Format strings are utilized in many programming

languages to embed values into a text string. At times, this

mechanism can be mishandled to perform buffer overflow

attacks, extricate information or execute arbitrary code.

Consider, C’s printf family supports Formatted I/O[6].

Void print(int age, char* name)

{

printf(“Name: %s\t age: %d\n”, name,age);

}

Format strings are typically the first or one of the first

arguments to the Printf style function. Moreover Format

Strings use the format specifiers that how the data should

look like.

Format specifiers depict:

● Position in string indicates stack arguments to
print.

● Kinds of specifiers indicate types of arguments.

For example: Consider two functions
Void safe()

{

printf(buf);

}

Void vulnerable()

{

printf(“%s”, buf);

}

 Here the problem arises when buf contains format

specifiers, they will be interpreted by printf but when buf is

used as the format string it could be potentially exploited.

We have seen this vulnerability in light of the indiscreet

utilization of the core format string functions that are

utilized in C[7]. These format string functions are open to
the various attacks. Hence, the better method to banish this

issue is to appropriately approve user input or to all the

more likely stay away from the passing user controlled

inputs to function at every possible opportunity.

So, it is recommended not to use printf without the

format parameters.To resolve these kinds of complications

throughout the software design, several Coding standards

were adopted that consists of rules and recommendations to

provide normative requirements for code[8], while on the

other hand recommendations are meant to provide guidance

that, when followed, should improve the safety, reliability,

and security of software systems. Softwares that follow

standard’s guidelines will lead to higher-quality-softwares

and robustness that are more resistant to attacks.

2.3 Later Stage Security Engineering-

UMLsec- It is one of the foremost model-driven

security engineering approaches. UMLsec broadens UML

specification with an UML profile that gives conventional

images to be utilized in explaining system design elements.

Also UML provides basic security factors such as

Confidentiality and Integrity that together constitute CIA

triad.

It likewise permits considering diverse threat situations

relying upon adversary strengths.UML also provides

symmetric encryption.

Secure UML gives UML-based language for modelling

role- based access control(Access control is a security

strategy that manages who or what can view or utilize
resources in a computing environment) policies and

authorization constraints of the model-driven engineering

approaches. This methodology is still firmly combined with

system design models. Secure UML characterizes a bunch

of vocabulary that addresses RBAC concepts like roles, role

permissions, and user-assigned roles.

This model driven methodology performs identification,

authentication and authorization of clients and substances

by assessing required login qualifications that can

incorporate passwords, individual ID numbers. It is a

significant part of layered defence to ensure access control

system. Every one of these things can be portrayed with the

assistance of UML conventional images.That is the reason

applications are created from high level UML models.

UML gives norms for software development Likewise

UML has huge visual components to build and they are not

difficult to follow.

III. TESTING PHASE

This phase is categorized into two parts, Security

Threats and Security tools”.So far,we have been discussing

the architecture of software. Now it’s time to discuss one of

the most important phases of SDL (Software development

lifecycle) and that is software security[9] testing. The sole

purpose of testing is to check behaviour and performance of

software.However, based on this scheme, testing is

diversely classified into various categories such as Manual

and Automated testing. Not only this, itis also classified as

Functional and Non-Functional testing.

Given below are the levels of testing:

i. Unit Testing

ii. Integration Testing

iii. System Testing
iv. Acceptance Testing

But all of these testings are based on the working of

software and here we are looking for the security of

software. Therefore to check all the vital attributes of

security are:

i. Confidentiality

ii. Integrity

iii. Availability

iv. Non-repudiation

We really need to dive deeper searching for the tests and

tools that are important to maintain these

attributes.Likewise the foremost intention of security testing

is to discover how vulnerable a system might be and to

decide if its data and resources are shielded from possible

intruders.

3.1 Security Threats-

Here are the various sorts of threats which can be

utilized to take advantage of software vulnerability:

3.1.1 SQL injection-

It is the most well-known kind of attack that is executed
by attackers to infuse malicious sql queries into the entrance

field for execution. It is a sort of attack which exploits

escape clauses present in the execution of web applications

that permits a hacker to hack the system.This results in

fetching the personal information of the users from the

Server database and hence violates the Confidentiality. To

prevent web applications from SQL injections10], Data

 CGC International Journal of Contemporary Technology and Research

 ISSN: 2582-0486 (online) Vol.-3, Issue-2 DOI: 10.46860/cgcijctr.2021.06.31.205

CGCIJCTR 2021 www.cgcijctr.com

© All Rights Reserved to CGCIJCTR Page 208

inputs must be sanitized.Fig1 is showing the number of

vulnerabilities meeting specified limitations year wise.

Fig 2. Number of vulnerabilities meeting specified limitations year

wise

3.1.2 Denial of service-

Denial-of-service (DOS) is an attack strives by hackers to
make all the services unavailable for the legitimate users.

DOS attacks normally fall into two classifications:

i. Buffer Overflow attacks [11]

ii. Flood attacks

 Many major companies have been the focus of DOS

attacks. This threat simply violates the availability attribute

of the CIA triad. Various Vulnerability IDs have been

registered in National vulnerability Database One of which

is (NVD - CVE-2020-3257)

Multiple vulnerabilities in the Cisco IOx application

environment of Cisco 809 and 829 Industrial Integrated

Services Routers (Industrial ISRs) and Cisco 1000 Series
Connected Grid Routers (CGR1000) that are running Cisco

IOS Software could permit an attacker to cause a denial of

service (DOS) condition or execute arbitrary code with

raised advantages on an affected device.

3.1.3 Identity spoofing

With regards to information security, Identity spoofing

is an attack wherein an attacker utilizes the authenticated

credentials of a real user to break into the system. A

considerable lot of the protocols in the TCP/IP suite don't

provide mechanisms for authenticating the source or

destination of a message, and are in this manner helpless

against spoofing attacks when additional safety measures

are not taken by applications to confirm the identity of the

sending or accepting host.One of the data Depicts by (NVD
- CVE-2002-1183)Windows 98 and Windows NT 4.0 don't

as expected check the Basic Constraints of digital

certificates, permitting far off attackers to execute code,

otherwise known as "New Variant of Certificate Validation

Flaw Could Enable Identity spoofing" (CAN-2002-0862).

3.1.4 Password cracking

Password cracking is the main part while doing

software security testing.In request to get to the private

spaces of an application, hackers can utilize a password

cracking tool or can figure a typical username/password.

Different password cracking attacks are also there. For

example Brute force attack, Dictionary attack. All these

attacks are possible because of the simple usernames and

passwords. Non-Complex passwords are easily available

online because cracking of passwords with the help of

password cracking tools becomes easy for attackers.

An issue was found on V-Zug Combi-Steam MSLQ
devices before Ethernet R07 and before WLAN R05.

Password authentication utilizes MD5 to hash passwords

(NVD - CVE-2019-17216). In this way, Cracking is

conceivable with minimal effort.

IV. MALWARE ATTACK

Malware is an attack in which hackers launch malicious

code into the software [12].Malicious code is a code that

cyber attackers create to obtain entrance or cause harm to a

computer or network, normally without the victim’s

knowledge. This results in giving them unauthorized access

into the system. Malware is frequently hard to recognize

and devices are commonly contaminated without the user in

any event, taking note.Malware attacks can happen on a

wide range of devices and operating systems, including

Microsoft Windows, macOS, Android, and iOS. It has been
seen that TCP function included in the firmware of

Mitsubishi Electric MELQIC IU1 series IU1-1M20-D

firmware version 1.0.7 and prior permits remote attackers to

sidestep access limitation and to stop the network functions

or execute malware by means of a uniquely created packet.

(NVD - CVE-2020-5545).

There are many types of attacks present in cyberspace.

Some attacks are used for data leak, some are used to track

user systems and others are just for monetary gain like in

the past, one malware was detected named as ransomware.

It attacks on a data storage of company and encrypts all the

company's data and demands a huge amount of money.

Following are the different types of malwares:

4.1. Virus

A virus is a malicious executable code that joins itself to a

reasonable program to contaminate it. The virus works

when the genuine program runs and can perform any

function, for example, erasing a document. The premier

activity acted in virus is that when a infected program is

executed, it will initially execute the virus followed by the
execution of native program code. Subsequent to corrupting

all the files from the current user's computer, the virus

engenders and sends its code through the network to the

users whose email address is put away in the current user's

computer. Most viruses require end-user initiation and can

actuate at a particular time or date. Viruses can be

innocuous and essentially show an image or they can be

damaging, for example, those that alter the data. Viruses

can be spread through email and instant message

connections, Web document downloads, and web-based

media scam links. Symptoms of having virus in a system
are:

i. Frequent pop-up windows.

ii. Changes to our homepage.

iii. Frequent crashes.

iv. Unusually sluggish computer performance.

v. Unusual activities like password changes.

The purpose of the virus is to modify the information. In

1949, viruses were firstly recognized in the publication of

“Theory of self-reproducing automata” by the great

professor John von Neumann. Various well-known viruses
are Boot sector virus, Direct action virus, Browser hijacker

and many more.

 CGC International Journal of Contemporary Technology and Research

 ISSN: 2582-0486 (online) Vol.-3, Issue-2 DOI: 10.46860/cgcijctr.2021.06.31.205

CGCIJCTR 2021 www.cgcijctr.com

© All Rights Reserved to CGCIJCTR Page 209

4.2. Worms
A worm is a malignant code that can recreate itself and

send duplicates from one computer to another like a virus,

however it is distinctive in execution. It doesn't change a

program rather it is enacted upon arrival to replicate and

propagate once more. The unreasonable replication brings

about halting the system; it gobbles system resources to

bring it down. A worm vivaciously looks for additional

machines to ruin, and the defiled machine acts as a worm

delivering machine for different machines associated with

it.Other than the underlying infection, they presently don't

need user support. Worms share similar patterns.

They all have an empowering weakness, an approach to

engender themselves, and they all contain a payload.Worms

usually slow down networks. As previously mentioned in

the introduction, the first worm was released by the
Computer Science student named Robert Morris onto the

Internet from the Massachusetts Institute of Technology.

Various kinds of worms are Internet worms, Email worms,

File-Sharing worms and IRC worms. Symptoms shown by

the presence of computer worms on a system are:

i. Programs opening and running automatically.

ii. Irregular Web Browser performance.

iii. Firewall warnings.

iv. Modified files.

4.3. Spyware

“Spyware runs quietly in the background, collecting

information”. As the phrase itself shows the definition of
spyware. This malware is intended to track and keep an eye

on the user.Spyware is unwanted software that spies on a

computer system to steal the personal information of a user.

It accumulates all the personal information and transfers it

to publicists, data firms or outside clients for his financial

increase. While trying to defeat safety efforts, spyware

frequently changes security settings. Spyware is utilized for

some reasons. It incorporates activity trackers, keystroke

collection, and data capture.Cybercrime statistics depicts:

i. A complete of 978 million individuals in 20

nations were influenced by cybercrime in 2017, as

indicated by Norton Cyber Security Insights
Report Global Results.

ii. Victims of cybercrime universally lost $172
billion.

Spyware frequently packages itself with genuine

software or with Trojan horses. Spyware is the simplest

danger that is possible to taint a device and it tends to be

difficult to recognize.

4.4. Trojan Horses
“The term is derived from the Ancient Greek story of

the beguiling deception that prompted the fall of the city of

Troy". A Trojan horse is a malignant code that looks real

yet can grab hold of your computer. This malignant code

exploits the advantages of the user that runs it. A Trojan is

intended to harm or to do any criminal behaviour on a

network. A Trojan can go about as an ensured application

to trap a user and afterward tries to bamboozle a user into

stacking and executing the malware on a device. Trojans
are found in image files, audio files or games. A Trojan

horse differs from a virus since it ties itself to non-

executable records. User might think that he has received an

email from his friend or a colleague and click on what looks

like a legitimate file. However, this isn't the situation, this
email is shipped off him by an attacker and the file that he

tapped on-and downloaded and opened has gone onto

introduce malware on your device. At the point when a user

executes the program, the malware can spread to different

records and harms the system. This is how cybercriminals

infiltrate the systems and attack on them. There are

different sorts of Trojan malwares like Backdoor Trojan,

Downloader Trojan, Fake AV Trojan, Info stealerTrojan

and so on. This is a never-ending list as common types of

Trojans can be listed out from alphabet A to Z.

4.5. Ransomware

Ransomware is a type of attack that is usually done with

the purpose of monetary gainIn other words, it is defined as

a kind of malware that keeps users from getting to their

system and requests deliver instalment to recapture

access.One of the three businesses in the UK faces this kind
of malware where they have to pay the demanded amount

to the team of hackers.The most common method to inject

malware into the system is through malicious spam. These

malicious spams use social engineering to trick the people

in order to gain access to their systems. There are three

main types of ransomware:

i. Scareware

ii. Screen lockers

iii. Encrypting ransomware

Based on the above threats and attacks, security testing

cannot be done manually, Therefore we have to identify the

automated tools to execute all security test cases.

V. SECURITY TOOLS

There are several methods that are especially designed

to help in securing the software and many a times, they help

to track the data loss and the attacker's information[13]. In

today's time, software security is a major concern for

companies. Therefore following are the various software

security tools:

5.1. Penetration Testing Tool

Penetration testing tools are utilized as a component of

penetration test (Pen Test) to computerize certain

undertakings, improve testing proficiency and find gives
that may be hard to track down utilizing manual analysis

strategies alone.Penetration testing is a good technique of

accessing security by actively looking for the exploitable

vulnerabilities. It is usually done by Red Teams, Tiger

Teams as pen testing is a black hat activity. Penetration

testing can be applied at various levels of granularity such

as

i. A single process

ii. The complete web application

iii. Network of many applications

Pen testers utilize creativity and mechanized tools to

quickly investigate a system attack surface. As indicated by

the 1967 Ware report, a Team of specialists headed by

Willis Product of RAND corp.formally assessed the

security problem for time-sharing computer systems. They
used the term “Penetration”. Two frequent penetration

testing tools are static analysis tools and dynamic analysis

tools.

 CGC International Journal of Contemporary Technology and Research

 ISSN: 2582-0486 (online) Vol.-3, Issue-2 DOI: 10.46860/cgcijctr.2021.06.31.205

CGCIJCTR 2021 www.cgcijctr.com

© All Rights Reserved to CGCIJCTR Page 210

5.2.Unit Testing Tool

Unit testing tools are the tools that analyse the source

code whether they are free from flaws or not[14]. The main

purpose of doing unit testing is to determine whether the
services at the micro level are free from defects. By

scanning smaller bits of code earlier in the process, unit

testing tools enable developers to find flaws faster, fix them

more easily. Hence unit testing can streamline application

security.

5.3. Vulnerability Scanner

A vulnerability scanner is a computer program intended

to evaluate computers, networks or applications for known
shortcomings. Vulnerability checking offers an approach to

discover application indirect accesses, malicious code and

different dangers that may exist in software brought or

applications developed internally. Nowadays vulnerability

scanners allow for both authenticated as well as non-

authenticated scans. The advanced vulnerability scanner

frequently customize vulnerability reports just as the

installed software, open ports, certificates and other host

information that can be questioned as part of work process.

5.4. Fuzz Testing

Fuzz testing is a software security technique that

involves the random data as inputs to the program. It is a

kind of random testing. The goal of Fuzz Testing is to make

sure that wrong things don’t happen. This test is usually

carried out to avoid the crashing of software. Moreover,

thrown exceptions, non-termination are the things that can
be the foundation of security vulnerabilities. Fuzz testing

complements the functional testing in various ways as it

tests the features directly. Following are the kinds of Fuzz

Testing:

i. Black-box(This tool knows nothing about the

program or its input)

ii. Grammar-based(This tool generates input

informed by a grammar)

iii. White-box (This tool produces new contributions

at least partially informed by the code of the

program being fuzzed)

VI. CONCLUSION

This paper is written with a purpose of knowing about

the Importance of Software Security. It involves the

Overview of Software security and what are the phases in

the SDL that affects the security during the Development of

software. Moreover this research includes the findings of

various threats that are increasingly growing day by day

and are responsible for harming the security of software.

Along with this ,It tells us how to conquer these attacks by

using the security tools.

REFERENCES

[1]. N. R. Mead and G. McGraw, "A portal for software security,"
in IEEE Security & Privacy, vol. 3, no. 4, pp. 75-79, July-

Aug. 2005, doi: 10.1109/MSP.2005.88.

[2]. G. McGraw, "Managing software security risks," in
Computer, vol. 35, no. 4, pp. 99-101, March 2002, doi:

10.1109/MC.2002.993782

[3]. L. Williams, A. Meneely and G. Shipley, "Protection Poker:
The New Software Security "Game";," in IEEE Security &

Privacy, vol. 8, no. 3, pp. 14-20, May-June 2010, doi:

10.1109/MSP.2010.58.

[4]. G. McGraw, "Software security," in IEEE Security &
Privacy, vol. 2, no. 2, pp. 80-83, March-April 2004, doi:

10.1109/MSECP.2004.1281254.

[5]. J. Wilander and M. Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention. In
Proceedings of the Network and Distributed System Security

Symposium, pages 149--162, February 2003.

[6]. L. O. Andersen. Program analysis and specialization for the
C programming language. PhD thesis, University of

Copenhagen, 1994

[7]. R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In
Proceedings of the International Workshop on Automatic

Debugging, pages 13--26, May 1997

[8]. Xiangyu Zhang and R. Gupta, "Hiding program slices for
software security," International Symposium on Code
Generation and Optimization, 2003. CGO 2003., San
Francisco, CA, USA, 2003, pp. 325-336, doi:

10.1109/CGO.2003.1191556

[9]. B. Potter and G. McGraw, "Software security testing," in
IEEE Security & Privacy, vol. 2, no. 5, pp. 81-85, Sept.-Oct.

2004, doi: 10.1109/MSP.2004.84.

[10]. J. Epstein, S. Matsumoto and G. McGraw, "Software security

and SOA: danger, Will Robinson!," in IEEE Security &
Privacy, vol. 4, no. 1, pp. 80-83, Jan.-Feb. 2006, doi:

10.1109/MSP.2006.23.

[11]. S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-

Control-Data Attacks Are Realistic Threats. In the
Proceedings of the 14th USENIX Security Symposium,

Baltimore, MD, Aug. 2005.

[12]. T. Pietraszek and C. V. Berghe. Defending against Injection
Attacks through Context-Sensitive String Evaluation. In the

Proceedings of the Recent Advances in Intrusion Detection

Symposium, Seattle, WA, Sept. 2005.

[13]. S. Barnum and G. McGraw, "Knowledge for software
security," in IEEE Security & Privacy, vol. 3, no. 2, pp. 74-

78, March-April 2005, doi: 10.1109/MSP.2005.45.

[14]. Erlingsson Ú. (2007) Low-Level Software Security: Attacks
and Defenses. In: Aldini A., Gorrieri R. (eds) Foundations of
Security Analysis and Design IV. FOSAD 2007, FOSAD
2006. Lecture Notes in Computer Science, vol 4677.

Springer, Berlin, Heidelberg.

	I. INTRODUCTION
	II. DESIGN PHASE
	2.1 Security Prerequisites
	2.1.1. Identification requirements:
	2.1.2. Authentication requirements:
	2.1.3. Authorization requirements:
	2.2 Security Vulnerabilities
	2.2.1. Buffer overflow:
	2.2.2. FORMAT STRING VULNERABILITY:
	2.3 Later Stage Security Engineering-
	3.1 Security Threats-
	3.1.1 SQL injection-
	Fig 2. Number of vulnerabilities meeting specified limitations year wise

	3.1.2 Denial of service-
	3.1.3 Identity spoofing
	3.1.4 Password cracking
	IV. Malware attack
	4.1. Virus
	4.2. Worms
	4.3. Spyware
	4.4. Trojan Horses
	4.5. Ransomware
	V. Security tools
	VI. Conclusion

